Rate at which glutamine enters TCA cycle influences carbon atom fate in intestinal epithelial cells.

نویسندگان

  • J Quan
  • M D Fitch
  • S E Fleming
چکیده

Glutamine carbon entry into the tricarboxylic acid (TCA) cycle was assessed in small intestinal epithelial cells by measuring CO2 production from [1-14C]glutamine, and these data together with [U-14C]glutamine data were used to calculate fractional oxidation rates for glutamine. CO2production from either [1-14C]glutamine or [U-14C]glutamine showed saturation kinetics, and the concentration needed to achieve the half-maximal rate of CO2production was 0.7 and 0.4 mmol/l, respectively. Maximal rate for [1-14C]glutamine was twice that for [U-14C]glutamine. Increasing glutamine concentration did not cause proportional increases in glutamine entry into the TCA cycle and glutamine oxidation. Consequently, fractional oxidation of glutamine decreased with increasing glutamine concentration. Fractional oxidation could be predicted from the rate at which glutamine carbon entered the TCA cycle. (Aminooxy)acetic acid, an aminotransferase inhibitor, reduced entry of glutamine into the TCA cycle and increased fractional oxidation of glutamine. Glutamate carbon entered the TCA cycle at about one-half the rate of glutamine-derived glutamate carbon and had a higher fractional oxidation rate when provided at equivalent concentrations to glutamine. These differences in the rate of entry predictably account for the differences in the metabolic fate of glutamine vs. glutamate carbon.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

AJP- Cremin, Fitch, Fleming Glucose Alleviates Ammonia-Induced Inhibition of Short Chain Fatty Acid Metabolism in Rat Colonic Epithelial Cells Running title: Ammonia and colonic epithelial metabolism

Ammonia decreased metabolism by rat colonic epithelial cells of butyrate and acetate to CO2 and ketones, but increased oxidation of glucose and glutamine. Ammonia decreased cellular concentrations of oxaloacetate (OAA) for all substrates evaluated. The extent to which butyrate carbon was oxidized to CO2 after entering the TCA cycle was not significantly influenced by ammonia, suggesting there w...

متن کامل

Glucose alleviates ammonia-induced inhibition of short-chain fatty acid metabolism in rat colonic epithelial cells.

Ammonia decreased metabolism by rat colonic epithelial cells of butyrate and acetate to CO2 and ketones but increased oxidation of glucose and glutamine. Ammonia decreased cellular concentrations of oxaloacetate for all substrates evaluated. The extent to which butyrate carbon was oxidized to CO2 after entering the tricarboxylic acid (TCA) cycle was not significantly influenced by ammonia, sugg...

متن کامل

Pathway of free fatty acid oxidation in human subjects. Implications for tracer studies.

To determine the pathway of plasma FFA oxidation and the site(s) of label fixation observed during infusion of FFA tracers, [1-13C]palmitate and [1-14C]acetate were infused intravenously for 3 h in five volunteers. Breath 13CO2 enrichment and 14CO2 specific activity were followed for 6 h to determine the labeled CO2 decay rates. Acetate enters directly into the TCA cycle; hence, if palmitate tr...

متن کامل

Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth

Oncogenes such as K-ras mediate cellular and metabolic transformation during tumorigenesis. To analyze K-Ras-dependent metabolic alterations, we employed ¹³C metabolic flux analysis (MFA), non-targeted tracer fate detection (NTFD) of ¹⁵N-labeled glutamine, and transcriptomic profiling in mouse fibroblast and human carcinoma cell lines. Stable isotope-labeled glucose and glutamine tracers and co...

متن کامل

Analysis of tricarboxylic acid-cycle metabolism of hepatoma cells by comparison of 14CO2 ratios.

The CO2-ratios method is applied to the analysis of abnormalities of TCA (tricarboxylic acid)-cycle metabolism in AS-30D rat ascites-hepatoma cells. This method utilizes steady-state 14CO2-production rates from pairs of tracers of the same compound to evaluate TCA-cycle flux patterns. Equations are presented that quantitatively convert CO2 ratios into estimates of probability of flux through TC...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The American journal of physiology

دوره 275 6 Pt 1  شماره 

صفحات  -

تاریخ انتشار 1998